definición y significado de F._J._Duarte | sensagent.com


   Publicitad D▼


 » 
alemán árabe búlgaro checo chino coreano croata danés eslovaco esloveno español estonio farsi finlandés francés griego hebreo hindù húngaro indonesio inglés islandés italiano japonés letón lituano malgache neerlandés noruego polaco portugués rumano ruso serbio sueco tailandès turco vietnamita
alemán árabe búlgaro checo chino coreano croata danés eslovaco esloveno español estonio farsi finlandés francés griego hebreo hindù húngaro indonesio inglés islandés italiano japonés letón lituano malgache neerlandés noruego polaco portugués rumano ruso serbio sueco tailandès turco vietnamita

Definición y significado de F._J._Duarte

Definición

definición de F._J._Duarte (Wikipedia)

   Publicidad ▼

Wikipedia

F. J. Duarte

From Wikipedia, the free encyclopedia

Jump to: navigation, search
F. J. Duarte

F. J. Duarte at a meeting of the Optical Society of America in 2006.

F. J. Duarte is a laser physicist and author/editor of several well-known books on tunable lasers.[1][2][3][4][5][6][7] He introduced the generalized multiple-prism dispersion theory[8][9][10] and has discovered various multiple-prism grating oscillator laser configurations.[11] These configurations include the multiple-prism near-grazing-incidence grating cavities originally disclosed as copper-laser-pumped narrow-linewidth tunable lasers.[12][13] Duarte's contributions have found applications in a variety of fields including:

In the late 1980s, Duarte applied Dirac’s notation to describe quantum mechanically the N-slit interferometer and to solve problems in industrial imaging and optical metrology.[29][30][31] The electro-optical N-slit interferometer uses beam expansion to illuminate the N-slit array and comprises a photodiode array, at the interference plane, to register the interferograms.[32] This work also led to a generalized N-slit interferometric equation that was then applied to describe interference, diffraction, refraction, and reflection, in a rational and unified approach.[33][34]

From the mid 1980s to early 1990s Duarte and scientists from the USArmy Missile Command developed, and demonstrated, ruggedized dispersive narrow-linewidth lasers tunable directly in the visiblespectrum.[35][36] This work led to experimentation with polymer gain media and in 1994 Duarte reported on the first narrow-linewidth tunable solid-state dye laser oscillators.[37] These dispersive oscillator architectures were then refined to yield single-longitudinal-mode emission limited only by Heisenberg's uncertainty principle.[38] His work on solid-state organic-inorganic materials led to the assessment of intra-gain-medium interference phenomena and to the emission of low-divergence homogeneous laser beams from polymer-nanoparticle gain media.[39] In 2005 Duarte and colleagues were the first to demonstrate coherent emission from an electrically excited organic semiconductor.[40] [41]

He studied physics at Macquarie University (Sydney, Australia) where he also established the successful science reform movement of the late 1970s.[42] [43] Science reform, at Macquarie, was widely supported by local scientists including physicists Ronald Ernest Aitchison, R. E. B. Makinson, and the famed John Clive Ward.[44] His career path includes post-doctoral research in Australia plus academic, and industrial-research, appointments in the United States.

Tunable lasers for the nuclear energy industry

As previously outlined, Duarte and Piper developed narrow-linewidth multiple-prism grating laser oscillators[13][45] whose designs have been adopted by various research groups working on atomic vapor laser isotope separation (AVLIS).[14][15][16] This work[13][45] was supported by the Australian Atomic Energy Commission.[45] In 2002 Duarte participated in research that led to the isotope separation of lithium using tunable diode lasers.[46]


References

  1. ^ F. J. Duarte and L. W. Hillman (Eds.), Dye Laser Principles (Academic, New York, 1990).
  2. ^ F. J. Duarte (Ed.), High Power Dye Lasers (Springer-Verlag, Berlin,1991).
  3. ^ F. J. Duarte (Ed.), Selected Papers on Dye Lasers (SPIE, Bellingham Wa, 1992).
  4. ^ F. J. Duarte (Ed.), Tunable Laser Applications (Marcel-Dekker, New York, 1995).
  5. ^ F. J. Duarte (Ed.), Tunable Lasers Handbook (Academic, New York, 1995).
  6. ^ F. J. Duarte, Tunable Laser Optics (Elsevier Academic, New York, 2003).
  7. ^ F. J. Duarte (Ed.), Tunable Laser Applications, 2nd Ed. (CRC, New York, 2009).
  8. ^ F. J. Duarte and J. A. Piper, Dispersion theory of multiple-prism beam expanders for pulsed dye lasers, Opt. Commun. 43, 303–307 (1982).
  9. ^ F. J. Duarte and J. A. Piper, Generalized prism dispersion theory, Am. J. Phys. 51, 1132–1134 (1983).
  10. ^ F. J. Duarte, Generalized multiple-prism dispersion theory for pulse compression in ultrafast dye lasers, Opt. Quantum Electron. 19, 223–229 (1987).
  11. ^ References and schematics on tunable laser oscillators
  12. ^ F. J. Duarte and J. A. Piper, A prism preexpanded grazing incidence pulsed dye laser, Appl. Opt. 20, 2113-2116 (1981).
  13. ^ a b c F. J. Duarte and J. A. Piper, Narrow linewidth high prf copper laser-pumped dye-laser oscillators, Appl. Opt. 23, 1391-1394 (1984).
  14. ^ a b S. Singh, K. Dasgupta, S. Kumar, K. G. Manohar, L. G. Nair, U. K. Chatterjee, High-power high-repetition-rate capper-vapor-pumped dye laser, Opt. Eng. 33, 1894-1904 (1994).
  15. ^ a b A. Sugiyama, T. Nakayama, M. Kato, Y. Maruyama, T. Arisawa, Characteristics of a pressure-tuned single-mode dye laser oscillator pumped by a copper vapor oscillator, Opt. Eng. 35, 1093-1097 (1996).
  16. ^ a b N. Singh, Influence of optical inhomogeneity in the gain medium on the bandwidth of a high-repetition-rate dye laser pumped by copper vapor laser, Opt. Eng. 45, 104204 (2006).
  17. ^ L. Goldman, Dye lasers in medicine, in Dye Laser Principles , F. J. Duarte and L. W. Hillman, Eds. (Academic, New York, 1990) Chapter 10.
  18. ^ R. M. Clement, M. N. Kiernan, and K . Donne, Treatment of vascular lessions, US Patent 6398801 (2002).
  19. ^ J. Sawinski and W. Denk, Miniature random-access fiber scanner for in vivo multiphoton imaging, J. Appl. Phys. 102, 034701 (2007).
  20. ^ B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, Femtosecond pump-probe near-field optical microscopy, Rev. Sci. Instrum. 70, 2758-2764 (1999).
  21. ^ U. Siegner, M. Achermann, and U. Keller, Spatially resolved femtosecond spectroscopy beyond the diffraction limit, Meas. Sci. Technol. 12, 1847-1857 (2001).
  22. ^ L. Y. Pang, J. G. Fujimoto, and E. S. Kintzer, Ultrashort-pulse generation from high-power diode arrays by using intracavity optical nonlinearities, Opt. Lett. 17, 1599-1601 (1992).
  23. ^ K. Osvay, A. P. Kovács, G. Kurdi, Z. Heiner, M. Divall, J. Klebniczki, and I. E. Ferincz, Measurement of non-compensated angular dispersionand the subsequent temporal lengthening of femtosecond pulses in a CPA laser, Opt. Commun. 248, 201-209 (2005).
  24. ^ J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd Ed. (Academic, New York, 2006).
  25. ^ W. Demtröder, Laserspektroscopie: Grundlagen und Techniken, 5th Ed. (Springer, Berlin, 2007).
  26. ^ W. Demtröder, Laser Spectroscopy: Basic Principles, 4th Ed. (Springer, Berlin, 2008).
  27. ^ P. Zorabedian, Characteristics of a grating-external-cavity semiconductor laser containing intracavity prism beam expanders, J. Lightwave Tech. 10, 330-335 (1992).
  28. ^ R. W. Fox, L. Hollberg, and A. S. Zibrov, Semiconductor diode lasers, in Atomic, Molecular, and Optical Physics: Electromagnetic Radiation, F. B. Dunning and R. G. Hulet (Eds.) (Academic, New York, 1997) Chapter 4.
  29. ^ F. J. Duarte and D. J. Paine, Quantum mechanical description of N-slit interference phenomena, in Proceedings of the International Conference on Lasers '88, R. C. Sze and F. J. Duarte (Eds.) (STS, McLean, Va, 1989) pp. 42-47.
  30. ^ F. J. Duarte, in High Power Dye Lasers (Springer-Verlag, Berlin,1991) Chapter 2.
  31. ^ F. J. Duarte, On a generalized interference equation and interferometric measurements, Opt. Commun. 103, 8–14 (1993).
  32. ^ F. J. Duarte, Electro-optical interferometric microdensitometer system, US Patent 5255069 (1993).
  33. ^ F. J. Duarte, Interference, diffraction, and refraction via Dirac’s notation, Am. J. Phys. 65, 637–640 (1997).
  34. ^ F. J. Duarte, Tunable Laser Optics (Elsevier Academic, New York, 2003). Chapter 2.
  35. ^ F. J. Duarte, J. J. Ehrlich, W. E. Davenport, and T. S. Taylor, Flashlamp-pumped narrow-linewidth dispersive dye laser oscillators: very low amplified spontaneous emission levels and reduction of linewidth instabilities, Appl. Opt. 29, 3176-3179 (1990).
  36. ^ F. J. Duarte, W. E. Davenport, J. J. Ehrlich, and T. S. Taylor,Ruggedized narrow-linewidth dispersive dye laser oscillator, Opt. Commun. 84, 310-316 (1991).
  37. ^ F. J. Duarte, Solid-state multiple-prism grating dye laser oscillators, Appl. Opt. 33, 3857-3860 (1994).
  38. ^ F. J. Duarte, Multiple-prism grating solid-state dye laser oscillator: optimized architecture, Appl. Opt. 38, 6347-6349 (1999).
  39. ^ F. J. Duarte and R. O. James, Tunable solid-state lasers incorporating dye-doped polymer-nanoparticle gain media, Opt. Lett. 28, 2088-2090 (2003).
  40. ^ F. J. Duarte, L. S. Liao, and K. M. Vaeth, Coherence characteristics of electrically excited tandem organic light-emitting diodes, Opt. Lett. 30, 3072-3074 (2005).
  41. ^ F. J. Duarte, Coherent electrically excited organic semiconductors: visibility of interferograms and emission linewidth, Opt. Lett. 32, 412-414 (2007).
  42. ^ F. J. Duarte et al., Science degree, University News 1 (100) 16 (1977).
  43. ^ B. Mansfield and M. Hutchinson, Liberality of Opportunity: A history of Macquarie University 1964-1989 (Hale and Iremonger, Sydney, 1992).
  44. ^ J. C. Ward, Memoirs of a Theoretical Physicist (Optics Journal, Rochester, 2004).
  45. ^ a b c F. J. Duarte and J. A. Piper, Comparison of prism preexpanded and grazing incidence grating cavities for copper laser pumped dye lasers, Appl. Opt. 21, 2782-2786 (1982).
  46. ^ I. E. Olivares, A. E. Duarte, E. A. Saravia, F. J. Duarte, Lithium isotope separation with tunable diode lasers, Appl. Opt. 41, 2973-2977 (2002).

External links

 

todas las traducciones de F._J._Duarte


Contenido de sensagent

  • definiciones
  • sinónimos
  • antónimos
  • enciclopedia

 

6259 visitantes en línea

computado en 0,031s