definición y significado de Skaņa | sensagent.com


   Publicitad R▼


 » 
alemán árabe búlgaro checo chino coreano croata danés eslovaco esloveno español estonio farsi finlandés francés griego hebreo hindù húngaro indonesio inglés islandés italiano japonés letón lituano malgache neerlandés noruego polaco portugués rumano ruso serbio sueco tailandès turco vietnamita
alemán árabe búlgaro checo chino coreano croata danés eslovaco esloveno español estonio farsi finlandés francés griego hebreo hindù húngaro indonesio inglés islandés italiano japonés letón lituano malgache neerlandés noruego polaco portugués rumano ruso serbio sueco tailandès turco vietnamita

Definición y significado de Skaņa

Definición

definición de Skaņa (Wikipedia)

   Publicidad ▼

Sinónimos

skaņa (n.)

nots, tonis, troksnis

Ver también

   Publicidad ▼

Frases

Diccionario analógico




skaņa (n.)

sound (en)[Hyper.]

izkliegt[Dérivé]


skaņa (n.)

musical notation (en)[Hyper.]

gamma[membre]

tonic (en)[Dérivé]


Wikipedia

Skaņa

Vikipēdijas raksts

Pārlēkt uz: navigācija, meklēt
Maijvabole kustina savus spārnus vidēji 45 reizes sekundē. Tās dūkšanas frekvence ir aptuveni 45 Hz
Bite kustina spārnus vidēji 200 reizes sekundē. Tās skanēšanas frekvence ir aptuveni 200 Hz
Ods kustina spārnus vidēji 5000 reizes sekundē. Tā sīkšanas frekvence ir aptuveni 5000Hz

Skaņa ir mehāniskās enerģijas pārvietošanās vielā. Skaņu apraksta dažādi fizikāli lielumi, kā piemēram, frekvence, viļņa garums, amplitūda, periods, skaņas ātrums utt. Skaņa neizplatās vakuumā. Skaņas vienmēr ir ap mums, kaut dažreiz tās pat neievērojam: cilvēku sarunāšanās, putnu vīterošana, koku lapu čaboņa vējā, ūdens šalkas, automobīļu motora troksnis. Dzirdot skaņu parasti raugāmies, no kurienes tā nāk un, kas to rada. Katrai skaņai ir savs skaņas avots. Skaņu izraisa kustība. Skaņas avots vienmēr ir kāds ķermenis, kas svārstās vai vibrē. Skaņu izraisošās svārstības ne vienmēr ir pamanāmas ar aci, taču bez svārstībām skaņu nav. Dabā var novērot daudzas un dažādas svārstības, kā, piemēram, koku zaru šūpošanos vējā, šūpoļu šūpošanos, ūdens virsmas viļņošanos. Svārstību skaitu vienā sekundē sauc par svārstības frekvenci. Frekvences vienība ir viena svārstība sekundē. Šo vienību sauc par hercu (Hz). [1]Tomēr ne visas svārstības ir arī dzirdamas. Skaņu dzirdēt ir iespējams tikai tad, kad tās avota svārstība nav pārāk reta vai arī pārāk bieža. Lielākajai daļai no mums cilvēkiem dzirdamo skaņu zēmākā frekvence ir aptuveni 16 - 20 svārstībām sekundē, bet augstākā frekvence - ap 20 000 svārstību vienā sekundē. Diemžēl cilvēkam novecojot, augstākā frekvence samazinās. Cilvēki skaņu uztver ar ausīm. Gaisa daļiņu kustība iesvārsta ausīs bungādiņu. Tālāk šīs mehāniskās svārstības ar 3 mazu kauliņu palīdzību iesvārsta auss gliemežnīcas bazilāro membrānu. Auss gliemežnīca mehāniskās svārstības pārvērš impulsos un tie tiek aizvadīti pa nerviem uz smadzenēm. Cilvēki un vairums dzīvnieku skaņas uztver ar ausīm. Tās skaņas svārstības pārveido īpašos signālos, kas pa dzirdes nervu nonāk galvas smadzenēs, radot dzirdes sajūtu. Skaņas izraisītās auss bungādiņas svārstības ir ļoti mazas. Katru skaņu subjektīvi raksturo skaņas skaļums. Skaņas skaļumu nosaka skaņas svārstību atvēziens jel amplitūda. Tas, cik skaļa izklausās katra skaņa, ir atkarīgs arī no skaņas frekvences.

Cilvēku un dzīvnieku dzirde:
Cilvēks, dzīvnieksHz
Trusis50 - 10 000
Cilvēks20 - 20 000
Suns15 - 50 000
Kaķis60 - 65 000
Sikspārnis1000 - 120 000
Delfīns150 - 150 000

Objektīvi skaņu raksturo skaņas spiediena un intensitātes līmeņi, ko mēra īpašās vienībās - decibelos (dB). Cilvēkam vajākās sadzirdāmās skaņas atbilst dažiem desmitiem decibelu. Savukārt skaļākās skaņas jau sasniedz simts un vēl vairāk decibelus. Visvājākās skaņas, ko cilvēks spēj saklausīt, sauc par dzirdamības slieksni. Ļoti stipras skaņas var izraisīt sāpju sajūtu ausī. Tās sauc par sāpju slieksni. Ilgstoši atrodoties augsta skaņas spiediena zonās, cilvēks var iegūt neatgriezenisku dzirdes bojājumu vienā vai abās ausīs. Skaņas spiediena līmenis vai Lp tiek definēts kā:

L_\mathrm{p}=10\, \log_{10}\left(\frac{{p}^2}{{p_\mathrm{ref}}^2}\right) =20\, \log_{10}\left(\frac{p}{p_\mathrm{ref}}\right)\mbox{ dB}
kur
p ir skaņas spiediens (Pa)
pref ir norādītais skaņas spiediens ( Parasti tiek izmantots skaņas spiediens gaisā, tas ir pref=20 µPa
log10 ir skaitļa logoritms, ar kuru ir jākāpina dotā bāze, lai iegūtu doto skaitli.

Satura rādītājs

Skaņas izplatīšanās

Skaņas viļņa garums

Pamatraksts: Skaņas viļņa garums

Skaņas viļņus veido molekulas, kas svārstās uz priekšu un atpakaļ. Katrā laika momentā kādās vietās molekulas sablīvējas, radot augsta spiediena apgabalus, turpretī no citām vietām tās aiziet prom, veidojot zema spiediena apgabalus. No skaņas avota augsta un zema spiediena apgabalu viļņi pārmaiņus izplatās gaisā. Šie skaņas viļņi aiznes skaņu līdz mūsu ausīm. [2] Arī skaņa izplatās kā vilnis. Tikai skaņas vilnis veidojas savādāk nekā vilnis uz ūdens, kurā iemet akmeni. Skaņas vilnis gaisā ir gaisa blīvuma svārstības, kas izplatās telpā. Gaiss pārmaiņu sablīvējas un izretinās, un tas notiek dēļ skaņu svārstību frekvenci. Tāpat kā vilni uz ūdens virsmas, arī skaņas vilni raksturo viļņa garums - attālums starp diviem secīgiem gaisa sablīvējumiem vai retinājumiem. Ūdenī skaņas viļņa garums ir aptuveni četras reizes lielāks nekā gaisā, jo ūdenī skaņa izplatās ātrāk.

Skaņas izplatīšanās ātrums

Pamatraksts: Skaņas izplatīšanās ātrums

Skaņas ātrums ir skaņas viļņa noiets attālums laika vienībā. Skaņas izplatīšanās ātrums gaisā pirmo reizi precīzi tika izmērīts tikai 1822. gadā. Šos mērījumus veica ievērojamu dabas pētnieku grupa: dabaszinātnieks Aleksandrs Humbolts, gāzu likumsakarību atklājējs Žozefs Luiss Gē-Lisaks un vēl citi dabas pētnieki. Šajā pētījumā tika noskaidrots, ka gaisā 0 grādos pēc celsija, skaņa izplatās ar ātrumu 331 m/s. Gaisā skaņa vienu kilometru veic aptuveni trijās sekundēs. Tukšumā (vakuumā) skaņa neizplatās. [3]Vispārīgā gadījumā (gaisā) skaņas ātrumu aprēķina pēc šādas formulas:

 v = \sqrt{\frac{\mathrm{k}}{\mathrm{\rho}}}

kur

     v ir skaņas izplatīšanās ātrums     k ir koeficents, kurš raksturo vides elastību     \rho ir vides blīvums

Gāzes skaņas ātrumu aprēķina pēc Laplasa formulas:

v=\sqrt{\frac{\mathrm{c_p}{R}{T}}{\mathrm{c_v}{M}}}

kur

     v ir skaņas izplatīšanās ātrums     T ir temperatūra kelvinos     M ir molmasa     R ir gāzu universālā konstante     cp un cv ir īpatnējā siltumietilpība

Izotropā cietķermenī, kuram ir gara un taisna cilindra forma skaņas ātrumu aprēķina pēc šādas formulas:

 v = \sqrt{\frac{\mathrm{E}}{\mathrm{\rho}}}

kur

     v ir skaņas izplatīšanās ātrums     \rho ir vides blīvums     E ir Junga modulis

Vēlāk arī tika noskaidrots, ka pilnīgi visās vielās skaņas ātrums nav vienāds. Un tas mainās atkarībā no apstākļiem, kādos viela atrodas. Skaņas ātrums pieaug, gaisa temperatūrai paaugstinoties. Tātad ziemā skaņa izplatās lēnāk nekā siltākajos gadalaikos - vasarā, pavasarī. Arī vielas stāvokļi ietekmē skaņas ātrumu. Cietās vielās skaņas ātrums ir lielāks par skaņas ātrumu vielā, kas atrodas šķidrā stāvoklī. Savukārt vielā, kas atrodas šķidrā stāvoklī skaņas ātrums izplatās ātrāk nekā gāzē. Tātad, piemēram, ūdens ir labāks skaņas vadītājs nekā gaiss. Tāpēc zem ūdens tālu var dzirdēt zemūdens dzinēju troksni.


Skaņas ātrums dažādās vidēs:
VielaSkaņas ātrums m/s
Visumsneizplatās
Acetons327
Gaiss331
Slāpeklis334
Ūdens tvaiks494
Korķis500
Hēlijs965
Ūdeņradis1284
Ūdens1490
Glicerīns1923
Koks3000
Varš3710
Čuguns3850
Granīts3950
Ozola koks4050
Dzelzs5200
Kvarca smilts5370
Stikls5600

Skaņas rimšana

Pamatraksts: Skaņas rimšana

Skaņas izplatīšanās dažādās vielās atšķiras ne tikai ar skaņas ātrumu. Palielinoties attālumam līdz skaņas avotam, samazinās dzirdamība - skaņa kļūst aizvien vājāka, līdz to vispār nedzird. Šī parādība ir skaņas rimšana. Skaņas vilnim izplatoties vielā, viļņa svārstības pamazām noplok. Viela skaņu itkā "uzsūc" jeb absorbē. Grūti iedomāties to skaņu jūkli, kādu mēs saklausītu vienlaikus, ja viela skaņas neabsorbētu, ja neviena skaņa gaisā un ūdenī nerimtu. Zināšanas par skaņas rimšanu ir ļoti nepieciešamas, būvējot jaunas ēkas. Katram zināms, cik neērta ir istaba ar plānām sienām, caur kurām dzirdams viss, kas notiek kaimiņos. Mājas sienām ir jāpasargā tās iemītnieki no āra trokšņiem. Tāpēc celtniecībā un telpu apdarē lieto skaņu izolējošus materiālus. Skaņu labi absorbē arī daudz irdenas, porainas, šķiedrainas, kurās ir daudz gaisa - korķis, vate, zāģskaidas, izdedži. Telpās skaņu labi "uzsūc" un traucē tai izplatīties mīkstās mēbeles, biezi aizkari, paklāji. Tāpēc lielā un tukšā istabā skan daudz labāk nekā pieblīvētā telpā.

Skaņas atstarošanās

Pamatraksts: Skaņas atstarošanās

Skaņas atstarošanās veidojas tad, kad skaņas, piemēram, izplatās gaisā, ceļā sastopjot šķērsli. Skaņas atstarošanos dabā var novērot kā atbalsi. Atbalsi var dzirdēt, ja laika intervāls, kādā skaņa izplatās līdz šķērslim - atstarotājam, un pēc atstarošanās no tā atgriežas pie novērotāja ir lielāks nekā 0.05-0.1 sekunde. Arī skaņas atstarošanās likums ir tāds pats kā gaismai. Ja skaņas vilnis krīt slīpi pret gludu virsmu, tad tas tikpat slīpi tādā leņķī atgriežas atpakaļ telpā, no kuras tas nācis. Zinot skaņas izplatīšanās virzienu, to, tāpat kā gaismu var attēlot ar staru. Kur skaņas "stars" krusto šķēršļa virsmu, tur uz to krīt skaņas vilnis. Ja šajā krustpunktā pret virsmu novelk perpendikulu, var noteikt skaņas krišanas leņķi. No virsmas atstarošanās skaņas stars atgriežas atpakaļ tādā pašā atstarošanās leņķī. Protams, dabā reti, kad skaņa sastopas ar ideāli gludu šķērsli, un arī krītošās skaņas virziens nav strikti noteikts. Tāpēc arī parasti skaņa atstarojas vairākos virzienos uzreiz un izklīst telpā. Kad skaņas atstarošanās ir spēcīga galvenokārt vienā virzienā, atstaroto skaņu var dzirdēt kā balsi. Nelielā telpā atbalsi nedzird. Te attālums no runātāja vai cita skaņas avota līdz sienām un griestiem ir neliels. No tiem atstarotā skaņa gandrīz momentāli atgriežas atpakaļ un saplūst ar tiešo skaņu. Lai dzirdētu atbalsi, attālumam līdz šķērslim jābūt pietiekami lielam. Tāpēc atbalsi iespējams labi novērot pie upes, ja pretējā krastā ir gluda klints vai stāva, mežaina nogāze. Dažreiz atbalso arī attāla mežmala. Ja skaņa atstarojas no vairākiem šķēršļiem, sadzirdamas vairākkārtējas atbalsis. Tā parasti notiek lielās alās. Uzsaucot vai pat tikai runājot, skaņas daudzkārtēji atstarojas no alas sienām, līdz pakāpeniski norimst. Atstarotās skaņas stiprums vienmēr ir mazāks nekā tiešās skaņas stiprums, jo šķērslis arī uzsūc skaņu. [4]

Skaņas veidi

Troksnis

Pamatraksts: Troksnis

Troksnis ir skaņu ar dažādu spiedienu frekvenci un intensitāti haotisks sakārtojums. Troksnis veidojas tad, ja tiek iesvārstīta viela no dažādiem skaņas avotiem ar dažādas frekvences viļņiem. Bieži šāda skaņu apkopojums cilvēkiem nepatīk. Nepatika pret spalgām skaņām mēdz būt gan fizioloģiskas, gan psiholoģiskas dabas.

  • Fizioloģiskā nepatika. Skaņa kļūst fizioloģiski nepatīkama, ja tā atrodas uz augšējā dzirdamības sliekšņa. Kad tāds troksnis pēkšņi un spēcīgi iedarbojas uz mūsu dzirdes šūnām, kas reti tiek aktivizētas, tas attiecīgi arī noslogo smadzenes.
  • Psiholoģiskā nepatika. Psiholoģiski nepatika ir izskaidrojama ar to, ka mēs kopš dzimšanas esam jūtīgi pret skaņām, kuras signalizē par cilvēka vajadzībām. Griezīgo skaņu, kuras rodas novelkot nazi gar porcelāna trauku, smadzenes var iztulkot kā kliedzienu pēc palīdzības. Līdzīgi arī citas skaņas var mums atgādināt ciešanas. Piemēram, daudzi uzskata, ka krīta čirkstoņa pret tāfeli ir līdzīga lūstošu kaulu troksnim.

Trokšņa spiediena līmenis: L=20log(p/p0) dB, kur p0 (dzirdamības slieksnis) = 2*10-5 Pa. Trokšņa līmeni telpā var izmērīt lietojot skalāro metodi vai lietojot aprēķinu metodi. Pastāv trokšņa sliekšņa līmenis LAeq un kritērija līmenis, kas nosaka pieļaujamo ekspozīciju uz cilvēku - ikdienas trokšņa ekspozīcijas līmenis LEX, 8st, dBA. Ikdienas trokšņa līmenis ietver visus trokšņus, kas ir darba vidē, tai skaitā impulsveida troksni.

Skaņas spiediens un trokšņa spiediena līmenis:
Skaņas avotsSkaņas spiediens (Pa)Trokšņa spiediena līmenis (dB)
Dzirdamības slieksnis 2kHZ - vesela cilvēka auss0.000020
Klusa lapu čaboņa0.0000610
Čuksti vai troksnis labi izolētā dzīvoklī0.0002-0.000620
Normāla runāšanās (1 metra attāluma no skaņas avota).0.002-0.0240-60
Televizors - normālā skaļumā (1 metra attāluma no skaņas avota).0.02aptuveni 60
Telefona zvans0.0370
Braucoša automašīna (10 metru attālumā no skaņas avota).0.02-0.260-80
Transportlīdzekļu trokšņi uz lielceļa (10 metru attālumā no skaņas avota).0.2-0.680-90
Rokas motorzāģa rūkšana2100
Rokkoncerts2.1110
Tvaika mašīnas dzinējs (100 metru attālumā no skaņas avota).6-200110-140
Sāpju slieksnis100134
Kosmisko raķešu strata vietaaptuveni 165
1883. gadā Krakatas vulkāna izvirdumsaptuveni 180
Kodolieroču ekspolozijaaptuveni 248

Muzikāla skaņa

Pamatraksts: Muzikāla skaņa

Ja vielas daļiņas tiek sablīvētas un retinātas ar svārstoša ķermeņa, piemēram, toņdakšas palīdzību, tad veidojas muzikāla skaņa.[5] Tonis ir viena no vienkāršākajām muzikālajām skaņām. Šos toņus visbiežāk rada mūzikas instrumentu stīgas, arī toņdakšas, cilvēka balss saišu periodiskas svārstības. Par toni sauc tādas svārstības, kas norisinās tikai ar vienu nemainīgu frekvenci. Šo frekveni sauc par toņa augstumu. Mūzikas instrumentu skaņu diapazonu neveido viena toņkārta. Katrai toņkārtai var rindot līdzās vēl nākamo, kurā tāpat ir septiņi pamattoņi, un tā atkal sākas ar skaņu do. Mūzikā par oktāvu sauc toņu rindu no do līdz do. Starp pamattoņiem, lai iegūtu vienmērīgāku un pilnīgāku muzikālo toņu virkni, ir ievietoti vēl tā sauktie pustoņi. Mūzikas instrumentu stīgu un stabuļu toņi avā starpā atšķiras ne tikai pēc augstuma, bet arī pēc tembra. Tembrs ir katra instrumenta skanējuma nokrāsa.

Pirmās oktāvas toņu frekvences:
TonisFrekvence (Hz)
do264
re297
mi330
fa352
sol396
la440
si495

Runa

Pamatraksts: Runa

Runa ir skaņas, no kurām veidojas vārdi un frāzes. Skaņu radīšanai cilvēkam kalpo balss aparāts. Tas atrodas rīkles iekšējajā daļā. Balss aparātu veido divas elestīgas balss saites, starp kurām ir balss sprauga. Brīvi elpojot, balss sprauga ir atvērta. Runājot balss saites saspringst un balss sprauga gandrīz aizveras. Gaiss, plūstot caur sašaurināto balss spraugu, iesvārsta balss saites. Tās vibrē, un rodas artikulētas skaņas - cilvēks runā vai dzied. Mainot balss saišu saspringumu, mainās saišu vibrāciju biežums un līdz ar to skaņas augstums. Sievietēm un bērniem ir mazas balss saites, tāpēc viņu runas skaņas jeb balss ir augstas. Vīriešiem balss saites ir lielākas, viņi runā zemākās balsīs. Balss tembru un skaļumu ietekmē arī mutes un deguna dobumi, kas ir skaņas rezonatori. Tie piešķir un pastiprina skaņām nokrāsu, kas ir savdabīga katram cilvēkam. Cilvēka valodas skaņas stipri atšķiras no dzīvnieku skaņām. Valodas skaņas nav iedzimtas, bet iemācītas. Valodas skaņas veido cilvēku valodas vārdus, ja tās sakārtotas noteiktā secībā. Skaņas veido vārdus, savukārt tie tālāk veido vārdu savienojumus, no kuriem veidojas teikumi. [6]

Infraskaņa

Pamatraksts: Infraskaņa

Par infraskaņu sauc skaņu, kuras svārstības frekvence ir mazāka par dzirdamās skaņas apakšējo robežu, tas ir aptuveni 16 - 20 Hz. [7] Infraskaņas avotu visapkārt ir daudz.Tādi piemēram ir - visi dzinēji, sprādzieni, šāvieni. Arī pērkona zemo rūkoņu pavada infraskaņa, un tā ir ļooti spēcīga. Infraskaņu rada daudzi vibrējoši motori, tā rodas lielu sprādzienu laikā, kas satricina gaisu. Zemo nedzirdamo skaņu ietekme uz cilvēkiem un dzīvniekiem vēl nav pilnīgi noskaidrota. Zemo frekvenču svārstību iedarbībā cilvēks un vairums dīvnieki dažkārt sajūt neizprotamu nemieru. Infraskaņu cilvēki nevar dzirdēt, jo tā ir pārāk zema, tomēr ja infraskaņa ir pārāk stipra cilvēki to var sajust. Cilvēks jūt spiedienu uz galvu, tā sāk sāpēt, parādās slikta pašsajūta un liels nogurums. Dažkārt tā pat samazina cilvēkam maņu orgānu jūtību, rada ausīs un mugurkaulā sāpju sajūtu, traucē smadzeņu darbību. Tuvojoties zemestrīcei, mājdzīvnieki kļūst nemierīgi. lai gan it kā nekas vēl neliecina par nelaimes tuvošanos. Zemestrīce vai vulkāna izvirdums vēl nav sācies, bet Zemes garozā jau radušās vājas zemo frekvenču svārstības, kas dzīvniekos izraisa satraukumu. Infraskaņas vājo absorbēšanās spēju dažādās vidēs izmanto tehnikā, piemēram, lai ar akustiskām metodēm atklātu tālus spēcīgus sprādzienus, pētītu zemūdens vidi un atmosfēras augšējos slāņus.

Ultraskaņa

Pamatraksts: Ultraskaņa

Ultraskaņa ir skaņa, kuras svārstības frekvence pārsniedz cilvēkam dzirdamās skaņas augšējo robežu, kas ir augstāka par 20000 Hz. [8] Ultraskaņas viļņi pārnes enerģiju, tos ir iespējams atstarot, lauzt un fokusēt. Ultraskaņu var radīt mākslīgi, bet tā ir sastopama arī dabā. Ultraskaņa, kā jau visa skaņas izplatās viļņu veidā, tikai ultraskaņas ferkvence ir augstāka par citām skaņām. Salīdzinot ar infraskaņu tās frekvence ir pat 1000 reizes augstāka. Salīdzinot ar citām skaņām, šķidrumos un cietās vielās, ultraskaņa izplatās labāk nekā zemfrekvences skaņas. Vislabāk ultraskaņa izplatās ūdenī. Ultraskaņu rada un dzird daudzi dzīvnieki, piemēram, suņi. Delfīni jūrā sazinās ar ultraskaņas palīdzību. Sikspārņi, kas dzīvo tumšās alās, orientējas ar ultraskaņas palīdzību. Ultraskaņas stars atstarojas no priekšmetiem un šķēršļiem, sikspārnis atstaroto signālu uztver un "redz", kur lidot. Sevišķi plaši ultraskaņu izmanto tehnikā un medīcīnā. Jūras dziļumu mēra ar eholotu - ierīci, kas raida un uztver ultraskaņas viļņus, zemūdens objektus meklē ar ultraskaņas stariem, šī skaņa tiek arī izmantota zemūdens sakaros. Medicīnā iekšējo orgānu apskatei izmnato ultraskaņu, kuras frekvence ir 3 līd 6 miljoni hercu. Šo izmeklēšanas metodi sauc par ultrasonogrāiju, un to, piemēram, izmanto lai kontrolētu bērniņa attīstību mātes organismā. Ultrasonogrāfija ir veselībai nekaitīga.

Dzīvnieku radītās skaņas

Pamatraksts: Dzīvnieku radītās skaņas

Ne tikai cilvēks rada un uztver skaņas, bet arī dzīvnieki ar to palīdzību savā starpā sazinās.

  • Cikāžu tēviņi rada dažāda veida skaņas. Viena no tām ir aicinājuma sauciens, kas piesaista gan mātītes, gan arī citus tēviņus. Cita veida skaņas tiek izdotas, kad tēviņš tuvojas mātītei. Un vēl citas, kad cikādes ir satrauktas.
  • Viens no iemesliem, kāpēc circeņu tēviņi čirkst ir, lai sazinātos ar citiem circeņiem. Tā kā zālē, kur tie dzīvo, apkārtne ir slikti pārredzama, tie lieto čirkstošas skaņas, lai noteiktu cits cita atrašanās vietu, iezīmētu teritoriju. Tie čirkst tādēļ, lai pievilinātu mātītes un cīnītos ar tēviņiem.
  • Defīnu izdotās skaņas var iedalīt divās grupās:
    • Kliedzieni, ko tie lieto sazinoties ar citiem delfīniem, izdalot klikšķus un svilpienus.
    • Augstas frekvences skaņas, kuras tie peldot izmanto kā sonaru apkārtnes pētīšanai.
  • Parasti putni dzied, lai paradītu, ka ir savas teritorijas saimnieki, kā arī, lai paziņotu par savu klātbūtni pretējam dzimumam. Biežāk tomēr dzied putnu tēviņi. Daži putni dzied vienu un to pašu dziesmu visu mūžu, daži papildina savus krājumus ar jebkuru skaņu, kuru tie dzird un atveido to.
  • Suņi rej uz citiem dzīvniekiem, lai paziņotu kur ir viņu teritorija. Suņi rej, arī tad, kad ir satraukti, vai grib sasveicināties.

Skaņas ieraksts un atskaņošana

Pamatraksts: Skaņas ieraksts un atskaņošana

Skaņuplate

Pamatraksts: Skaņuplate
Jau sirmā senatnē cilvēki valodu pierakstīja ar burtiem un mūziku - nošu rakstā, tomēr pašu skaņu ierakstīt un atskaņot izdevās tikai apmēram pirms 100 gadiem. Tā kā skaņa ir svārstība, tad bija jāizgudro ierīce, kas varētu tās atcerēties un atjaunot. Pirmā šāda ierīce bija skaņuplate. Skaņuplates ierakstīja skaņu studijā. Tur skaņu uztvēra ar mikrofoniem un pārvērta elektriskajās svārstībās.
Gramafona skaņuplates
Pēc tam elektriskās svārstības iekustināja "adatu", kas it kā saskrāpēja īpašu metāla sagatavi. No tās rūpnīcā izgatavoja plastmasas kopijas - skaņuplates. Lai noklausītos ierakstu, atskaņotāja adatai ir jāslīd pa skaņuplati un jāsvārstās. Atskaņotājs šīs svārstības pārveidoja dzirdamajā skaņā. Šis šķietami vienkāšais skaņas ierakstīšanas paņēmiens ir saglabājies arī šodien, tikai ir radušīes arī citi skaņas svārstību saglabāšanas paņēmieni. [9]

Fonogrāfs

Pamatraksts: Fonogrāfs
Tomass Alva Edisons (1847-1931) izgatavoja pirmo aparātu pirms simts gadiem, ar kuru varēja ierakstīt skaņas un pēc tam tās atskaņot. Viņš savu ierīci nosauca par fonogrāfu - skaņas rakstītāju. Edisona fonogrāfs sastāvēja no taurītes, ko nosedza plāna membrāna - tagadējo mikrofonu priekštece. Membrānu iesvārstīja taurītē ierunātās skaņas. Kopā ar membrānu svārstījās adata, kas uz vara folijas uzklātajā vaska kārtiņā iezīmēja līkloču celiņu. Foliju ripināja rotējošs disks. Tad, kad šādā veidā "saglabātās" skaņas svārstījās no jauna iesvārstīja adatu un membrānu, skaņu atkal varēja noklausīties. [10]
Edisona cilindra fonogrāfs 1899

Magnetofons

Pamatraksts: Magnetofons
Par mūsu sadzīves ierīci ir kļuvis magnetofons. Ierakstot skaņu ar magnetofonu, skaņas eliņš tiek iezīmēts magnētiskajā lentē, kas slīd gar īpašu skaņas ieraksta galviņu. Šo celiņu cilvēks neredz. Skaņas svārstības, pārvērstas elektriskaajās svārstībās, magnetizē lentei uzklātu speciālu magnētiskās vielas kārtiņu. Atskaņojot magnētisko lenti, notiek pretējs process. Lente noteiktā ātrumā slīd gar atskaņōšanas galviņu. Magnētiskais skaņas celiņš tajā izraisa tādas pašas elektriskās svārstības kā skaņu ieraktot. Elektriskās svārstības savukārt iesvārsta skaļruņu membrānas, un rodas skaņa. Lai pasargātu magnetafona lenti no bojājumiem, tā tiek iemontēta kasetē [11]

Kompaktdiski

Pamatraksts: Kompaktdiski

Veidojot skaņu ierakstus, ir svarīgi, lai ierakstītā skaņa iespējami precīzi atbilstu dzīvajam izpildījumam. Pašlaik par kvalitatīvāko, drošāko un izturīgāko skaņas saglabāšanas veidu tiek uzskatītas gaismas skaņuplates - kompaktdiski. Kompaktdiskus izgatavo no īpašas caurspīdīgas plastmasas. To virskārtā ar lāzeru iedzedzina spirālveida skaņas celiņus - mikroskopiskus padziļinājumus svīttriņas, kas satur visu informāciju par skaņdarbu. Tad diska virsmai uzputina plānu alumīnija kārtiņu, kuru pārklāj ar aizsargslāni - laku.

Atsauces

  1. Šilters, E. Fizika 8. klasei. Rīga: Lielvārds, 2000. 68.lpp. ISBN 9984-11-000-1
  2. Lielā ilustrētā enciklopēdija. Rīga: Zvaigzne ABC, 1989. 488.lpp.
  3. http://www.liis.lv/fizika/DD1/skana.htm
  4. Vaivanovskis, E., Puķītis P. Fizikas rokasgrāmata. Rīga: Zvaigzne ABC, 1985.
  5. http://www.audio.lv/component/option,com_joomlaboard/Itemid,34/func,view/id,82/catid,37/
  6. Šilters, E. Fizika 8. klasei. Rīga: Lielvārds, 2000. 68.lpp. ISBN 9984-11-000-1
  7. http://www.lielvards.lv/fizika_termini/?klase_get=1&tema_get=8&t_id=42
  8. http://www.lielvards.lv/fizika_termini/?klase_get=1&tema_get=8&t_id=127
  9. Šilters, E. Fizika 8. klasei. Rīga: Lielvārds, 2000. 80.lpp. ISBN 9984-11-000-1
  10. Šilters, E. Fizika 8. klasei. Rīga: Lielvārds, 2000. 81.lpp. ISBN 9984-11-000-1
  11. Šilters, E. Fizika 8. klasei. Rīga: Lielvārds, 2000. 80.lpp. ISBN 9984-11-000-1

.

 

todas las traducciones de Skaņa


Contenido de sensagent

  • definiciones
  • sinónimos
  • antónimos
  • enciclopedia

 

5910 visitantes en línea

computado en 0,062s