definición y significado de System | sensagent.com


   Publicitad R▼


 » 
alemán árabe búlgaro checo chino coreano croata danés eslovaco esloveno español estonio farsi finlandés francés griego hebreo hindù húngaro indonesio inglés islandés italiano japonés letón lituano malgache neerlandés noruego polaco portugués rumano ruso serbio sueco tailandès turco vietnamita
alemán árabe búlgaro checo chino coreano croata danés eslovaco esloveno español estonio farsi finlandés francés griego hebreo hindù húngaro indonesio inglés islandés italiano japonés letón lituano malgache neerlandés noruego polaco portugués rumano ruso serbio sueco tailandès turco vietnamita

Definición y significado de System

Definición

system (n.)

1.the members of a social organization who are in power

2.instrumentality that combines interrelated interacting artifacts designed to work as a coherent entity"he bought a new stereo system" "the system consists of a motor and a small computer"

3.an ordered manner; orderliness by virtue of being methodical and well organized"his compulsive organization was not an endearing quality" "we can't do it unless we establish some system around here"

4.the living body considered as made up of interdependent components forming a unified whole"exercise helped him get the alcohol out of his system"

5.a group of physiologically or anatomically related organs or parts"the body has a system of organs for digestion"

6.a complex of methods or rules governing behavior"they have to operate under a system they oppose" "that language has a complex system for indicating gender"

7.an organized structure for arranging or classifying"he changed the arrangement of the topics" "the facts were familiar but it was in the organization of them that he was original" "he tried to understand their system of classification"

8.a procedure or process for obtaining an objective"they had to devise a system that did not depend on cooperation"

9.a group of independent but interrelated elements comprising a unified whole"a vast system of production and distribution and consumption keep the country going"

10.(physical chemistry) a sample of matter in which substances in different phases are in equilibrium"in a static system oil cannot be replaced by water on a surface" "a system generating hydrogen peroxide"

   Publicidad ▼

Merriam Webster

SystemSys"tem (?), n. [L. systema, Gr. �, fr. � to place together; sy`n with + � to place: cf. F. système. See Stand.]
1. An assemblage of objects arranged in regular subordination, or after some distinct method, usually logical or scientific; a complete whole of objects related by some common law, principle, or end; a complete exhibition of essential principles or facts, arranged in a rational dependence or connection; a regular union of principles or parts forming one entire thing; as, a system of philosophy; a system of government; a system of divinity; a system of botany or chemistry; a military system; the solar system.

The best way to learn any science, is to begin with a regular system, or a short and plain scheme of that science well drawn up into a narrow compass. I. Watts.

2. Hence, the whole scheme of created things regarded as forming one complete plan of whole; the universe. “The great system of the world.” Boyle.

3. Regular method or order; formal arrangement; plan; as, to have a system in one's business.

4. (Mus.) The collection of staves which form a full score. See Score, n.

5. (Biol.) An assemblage of parts or organs, either in animal or plant, essential to the performance of some particular function or functions which as a rule are of greater complexity than those manifested by a single organ; as, the capillary system, the muscular system, the digestive system, etc.; hence, the whole body as a functional unity.

6. (Zoöl.) One of the stellate or irregular clusters of intimately united zooids which are imbedded in, or scattered over, the surface of the common tissue of many compound ascidians.

Block system, Conservative system, etc. See under Block, Conservative, etc.

   Publicidad ▼

Definición (más)

definición de System (Wikipedia)

Sinónimos

Ver también

Frases

English system • Federal Home Loan Bank System • International System • System A Transporter • System A Transporter Proteins • System ASC Transporter • System ASC Transporter Proteins • System Hospital Medication • System L Transporter • System L Transporter Proteins • System y+ Transporter • System y+L Transporter • System, Ecological • System, Hospital Communication • System, Multi-Hospital • System, Multi-Institutional • System, Radiologic Information • System, Radiology Information • computer system • drive line system • economic system • fire control system • gas system • legal system • point system • political system • power system • school system • social system • sound system • system administrator • system analysis • system call • system clock • system command • system error • system of coinage • system of education • system of government • system of logic • system of macrophages • system of measurement • system of numeration • system of reference • system of rules • system of weights • system of weights and measures • system program • tax system • telephone system • water system • word processing system

Community legal system • European Monetary System • European accounting system • European electoral system • Schengen Information System • United Nations system • accounting system • aid system • banking system • bicameral system • change of political system • computer system • cultivation system • database management system • double-ballot voting system • economic system • educational system • electoral system • farming system • geographical information system • health care system • information system • intelligent transport system • international monetary system • landholding system • legal system • list voting system • majority voting system • management information system • multiparty system • one-party system • operating system • parliamentary system • political system • prison system • reactor cooling system • single-ballot system • standardised accounting system • tax system • two-party system • unicameral system • uninominal voting system

Diccionario analógico




system (n.)

live body[Hyper.]


system (n.)




system (n.)


system (n.)


system (n.)


Wikipedia

System

From Wikipedia, the free encyclopedia

Jump to: navigation, search
A schematic representation of a closed system and its boundary

System (from Latin systēma, in turn from Greek σύστημα systēma) is a set of interacting or interdependent entities forming an integrated whole.

The concept of an 'integrated whole' can also be stated in terms of a system embodying a set of relationships which are differentiated from relationships of the set to other elements, and from relationships between an element of the set and elements not a part of the relational regime.

The scientific research field which is engaged in the study of the general properties of systems include systems theory, cybernetics, dynamical systems and complex systems. They investigate the abstract properties of the matter and organization, searching concepts and principles which are independent of the specific domain, substance, type, or temporal scales of existence.

Most systems share common characteristics, including:

  • Systems have structure, defined by parts and their composition;
  • Systems have behavior, which involves inputs, processing and outputs of material, energy or information;
  • Systems have interconnectivity: the various parts of a system have functional as well as structural relationships between each other.
  • System(s) have by itself function(s) or group of functions

The term system may also refer to a set of rules that governs behavior or structure.

Contents

History

The word system in its meaning here, has a long history which can be traced back to Plato (Philebus), Aristotle (Politics) and Euclid (Elements). It had meant "total", "crowd" or "union" in even more ancient times, as it derives from the verb sunìstemi, uniting, putting together.

In the 19th century the first to develop the concept of a "system" in the natural sciences was the French physicist Nicolas Léonard Sadi Carnot who studied thermodynamics. In 1824 he studied what he called the working substance (system), i.e. typically a body of water vapor, in steam engines, in regards to the system's ability to do work when heat is applied to it. The working substance could be put in contact with either a boiler, a cold reservoir (a stream of cold water), or a piston (to which the working body could do work by pushing on it). In 1850, the German physicist Rudolf Clausius generalized this picture to include the concept of the surroundings and began to use the term "working body" when referring to the system.

One of the pioneers of the general systems theory was the biologist Ludwig von Bertalanffy. In 1945 he introduced models, principles, and laws that apply to generalized systems or their subclasses, irrespective of their particular kind, the nature of their component elements, and the relation or 'forces' between them.[1]

Significant development to the concept of a system was done by Norbert Wiener and Ross Ashby who pioneered the use of mathematics to study systems [2][3].

In the 1980s the term complex adaptive system was coined at the interdisciplinary Santa Fe Institute by John H. Holland, Murray Gell-Mann and others.

System concepts

Environment and boundaries
Systems theory views the world as a complex system of interconnected parts. We scope a system by defining its boundary; this means choosing which entities are inside the system and which are outside - part of the environment. We then make simplified representations (models) of the system in order to understand it and to predict or impact its future behavior. These models may define the structure and/or the behavior of the system.
Natural and man-made systems
There are natural and man-made (designed) systems. Natural systems may not have an apparent objective but their outputs can be interpreted as purposes. Man-made systems are made with purposes that are achieved by the delivery of outputs. Their parts must be related; they must be “designed to work as a coherent entity” - else they would be two or more distinct systems
Theoretical Framework
An open system exchanges matter and energy with its surroundings. Most systems are open systems; like a car, coffeemaker, or computer. A closed system exchanges energy, but not matter, with its environment; like Earth or the project Biosphere2 or 3. An isolated system exchanges neither matter nor energy with its environment; a theoretical example of which would be the universe.
Process and transformation process
A system can also be viewed as a bounded transformation process, that is, a process or collection of processes that transforms inputs into outputs. Inputs are consumed; outputs are produced. The concept of input and output here is very broad. E.g., an output of a passenger ship is the movement of people from departure to destination.
Subsystem
A subsystem is a set of elements, which is a system itself, and a part of a larger system.

Types of systems

Evidently, there are many types of systems that can be analyzed both quantitatively and qualitatively. For example, with an analysis of urban systems dynamics, [A.W. Steiss] [4] defines five intersecting systems, including the physical subsystem and behavioral system. For sociological models influenced by systems theory, where Kenneth D. Bailey [5] defines systems in terms of conceptual, concrete and abstract systems; either isolated, closed, or open, Walter F. Buckley [6] defines social systems in sociology in terms of mechanical, organic, and process models. Bela H. Banathy [7] cautions that with any inquiry into a system that understanding the type of system is crucial and defines Natural and Designed systems.

In offering these more global definitions, the author maintains that it is important not to confuse one for the other. The theorist explains that natural systems include sub-atomic systems, living systems, the solar system, the galactic system and the Universe. Designed systems are our creations, our physical structures, hybrid systems which include natural and designed systems, and our conceptual knowledge. The human element of organization and activities are emphasized with their relevant abstract systems and representations. A key consideration in making distinctions among various types of systems is to determine how much freedom the system has to select purpose, goals, methods, tools, etc. and how widely is the freedom to select distributed (or concentrated) in the system.

George J. Klir [8] maintains that no "classification is complete and perfect for all purposes," and defines systems in terms of abstract, real, and conceptual physical systems, bounded and unbounded systems, discrete to continuous, pulse to hybrid systems, et cetera. The interaction between systems and their environments are categorized in terms of absolutely closed systems, relatively closed, and open systems. The case of an absolutely closed system is a rare, special case. Important distinctions have also been made between hard and soft systems.[9] Hard systems are associated with areas such as systems engineering, operations research and quantitative systems analysis. Soft systems are commonly associated with concepts developed by Peter Checkland and Brian Wilson through Soft Systems Methodology (SSM) involving methods such as action research and emphasizing participatory designs. Where hard systems might be identified as more "scientific," the distinction between them is actually often hard to define.

Cultural system

A cultural system may be defined as the interaction of different elements of culture. While a cultural system is quite different from a social system, sometimes both systems together are referred to as the sociocultural system. A major concern in the social sciences is the problem of order. One way that social order has been theorized is according to the degree of integration of cultural and social factors.

Economic system

An economic system is a mechanism (social institution) which deals with the production, distribution and consumption of goods and services in a particular society. The economic system is composed of people, institutions and their relationships to resources, such as the convention of property. It addresses the problems of economics, like the allocation and scarcity of resources.

Application of the system concept

Systems modeling is generally a basic principle in engineering and in social sciences. The system is the representation of the entities under concern. Hence inclusion to or exclusion from system context is dependent of the intention of the modeler.

No model of a system will include all features of the real system of concern, and no model of a system must include all entities belonging to a real system of concern.

Systems in information and computer science

In computer science and information science, system could also be a method or an algorithm. Again, an example will illustrate: There are systems of counting, as with Roman numerals, and various systems for filing papers, or catalogues, and various library systems, of which the Dewey Decimal System is an example. This still fits with the definition of components which are connected together (in this case in order to facilitate the flow of information).

System can also be used referring to a framework, be it software or hardware, designed to allow software programs to run, see platform.

Systems in engineering and physics

In engineering and physics, a physical system is the portion of the universe that is being studied (of which a thermodynamic system is one major example). Engineering also has the concept of a system that refers to all of the parts and interactions between parts of a complex project. Systems engineering refers to the branch of engineering that studies how this type of system should be planned, designed, implemented, built, and maintained.

Systems in social and cognitive sciences and management research

Social and cognitive sciences recognize systems in human person models and in human societies. They include human brain functions and human mental processes as well as normative ethics systems and social/cultural behavioral patterns.

In management science, operations research and organizational development (OD), human organizations are viewed as systems (conceptual systems) of interacting components such as subsystems or system aggregates, which are carriers of numerous complex processes and organizational structures. Organizational development theorist Peter Senge developed the notion of organizations as systems in his book The Fifth Discipline.

Systems thinking is a style of thinking/reasoning and problem solving. It starts from the recognition of system properties in a given problem. It can be a leadership competency. Some people can think globally while acting locally. Such people consider the potential consequences of their decisions on other parts of larger systems. This is also a basis of systemic coaching in psychology.

Organizational theorists such as Margaret Wheatley have also described the workings of organizational systems in new metaphoric contexts, such as quantum physics, chaos theory, and the self-organization of systems.

Systems applied to strategic thinking

In 1988, military strategist, John A. Warden III introduced his Five Ring System model in his book, The Air Campaign contending that any complex system could be broken down into five concentric rings. Each ring—Leadership, Processes, Infrastructure, Population and Action Units—could be used to isolate key elements of any system that needed change. The model was used effectively by Air Force planners in the First Gulf War.[10],[11],[12]. In the late 1990s, Warden applied this five ring model to business strategy[13].

See also

References

  1. ^ 1945, Zu einer allgemeinen Systemlehre, Blätter für deutsche Philosophie, 3/4. (Extract in: Biologia Generalis, 19 (1949), 139-164.
  2. ^ 1948, Cybernetics: Or the Control and Communication in the Animal and the Machine. Paris, France: Librairie Hermann & Cie, and Cambridge, MA: MIT Press.Cambridge, MA: MIT Press.
  3. ^ 1956. An Introduction to Cybernetics, Chapman & Hall.
  4. ^ Steiss 1967, p.8-18.
  5. ^ Bailey, 1994.
  6. ^ Buckley, 1967.
  7. ^ Banathy, 1997.
  8. ^ Klir 1969, pp. 69-72
  9. ^ Checkland 1997; Flood 1999.
  10. ^ Warden, John A. III (1988). The Air Campaign: Planning for Combat. Washington, D.C.: National Defense University Press. ISBN 9781583481004. 
  11. ^ Warden, John A. III (September 1995). "Chapter 4: Air theory for the 21st century" (in Air and Space Power Journal). Battlefield of the Future: 21st Century Warfare Issues. United States Air Force. http://www.airpower.maxwell.af.mil/airchronicles/battle/chp4.html. Retrieved December 26, 2008. 
  12. ^ Warden, John A. III (1995). "Enemy as a System". Airpower Journal Spring (9): 40–55. http://www.airpower.maxwell.af.mil/airchronicles/apj/apj95/spr95_files/warden.htm. Retrieved 2009-03-25. 
  13. ^ Russell, Leland A.; Warden, John A. (2001). Winning in FastTime: Harness the Competitive Advantage of Prometheus in Business and in Life. Newport Beach, CA: GEO Group Press. ISBN 0971269718. 

Further reading

  • Alexander Backlund (2000). "The definition of system". In: Kybernetes Vol. 29 nr. 4, pp. 444-451.
  • Kenneth D. Bailey (1994). Sociology and the New Systems Theory: Toward a Theoretical Synthesis. New York: State of New York Press.
  • Bela H. Banathy (1997). "A Taste of Systemics", ISSS The Primer Project.
  • Walter F. Buckley (1967). Sociology and Modern Systems Theory, New Jersey: Englewood Cliffs.
  • Peter Checkland (1997). Systems Thinking, Systems Practice. Chichester: John Wiley & Sons, Ltd.
  • Robert L. Flood (1999). Rethinking the Fifth Discipline: Learning within the unknowable. London: Routledge.
  • George J. Klir (1969). Approach to General Systems Theory, 1969.
  • Brian Wilson (1980). Systems: Concepts, methodologies and Applications, John Wiley
  • Brian Wilson (2001). Soft Systems Methodology—Conceptual model building and its contribution, J.H.Wiley.
  • Beynon-Davies P. (2009). Business Information + Systems. Palgrave, Basingstoke. ISBN: 978-0-230-20368-6

External links

 

todas las traducciones de System


Contenido de sensagent

  • definiciones
  • sinónimos
  • antónimos
  • enciclopedia

 

4442 visitantes en línea

computado en 0,047s