definición y significado de 過酸化水素 | sensagent.com


   Publicitad R▼


 » 
alemán árabe búlgaro checo chino coreano croata danés eslovaco esloveno español estonio farsi finlandés francés griego hebreo hindù húngaro indonesio inglés islandés italiano japonés letón lituano malgache neerlandés noruego polaco portugués rumano ruso serbio sueco tailandès turco vietnamita
alemán árabe búlgaro checo chino coreano croata danés eslovaco esloveno español estonio farsi finlandés francés griego hebreo hindù húngaro indonesio inglés islandés italiano japonés letón lituano malgache neerlandés noruego polaco portugués rumano ruso serbio sueco tailandès turco vietnamita

Definición y significado de 過酸化水素

Definición

definición de 過酸化水素 (Wikipedia)

   Publicidad ▼

Sinónimos

Diccionario analógico

   Publicidad ▼

Wikipedia

過酸化水素

出典: フリー百科事典『ウィキペディア(Wikipedia)』

過酸化水素
IUPAC名Hydrogen Peroxide
別名Hydroperoxide, Hydrogen dioxide
組成式H2O2
式量34.0 g/mol
形状無色液体
CAS登録番号[7722-84-1]
密度1.4 g/cm3, 液体(90%)
水への溶解度∞ g/100 mL ( ℃)
融点-11 ℃(90%)
沸点141 ℃(90%)
出典ICSC

過酸化水素(かさんかすいそ、Hydrogen peroxide)は、化学式 H2O2 で表される化合物。しばしば過水(かすい)と略称される。主に水溶液酸化剤殺菌剤漂白剤として利用される。

目次

性質

常温では無色の水よりわずかに粘度の高い弱酸性の液体[1]エタノールエーテルに可溶。僅かにオゾンに似た臭いがする[2]。過酸化水素は不安定で酸素を放出しやすく、非常に強力な酸化力を持つヒドロキシラジカルを生成しやすい。過酸化水素は活性酸素の一種ではあるが、フリーラジカルではない。

強い腐食性を持ち、高濃度のものが皮膚に付着すると痛みをともなう白斑が生じる。また、可燃物と混合すると過酸化物を生成、発火させることがある。水に溶けると、分解されるまでは水生生物に対して若干の毒性を持つ。[1]

実験室では、酸素を得る際に使われる。この反応式は以下の通りである。

\rm 2H_2O_2 \longrightarrow 2H_2O + O_2

反応速度を大きくするため触媒として二酸化マンガン酵素の一種カタラーゼを使用する。傷口の消毒時に生じる泡は体内にあるカタラーゼ触媒として働いて生じる酸素である。

なお、過酸化水素は消防法第2条第7項及び別表第一第6類2号により危険物第6類(酸化性液体)に指定されている。

また、重量%で6%を超える濃度の水溶液は毒物及び劇物取締法により劇物に指定されている。

利用

工業原料としての利用

過酸化水素全体の使用量では、製紙の際のパルプ漂白や廃水処理、半導体の洗浄など、工業的な利用が大部分を占める。例えば塩素系の漂白剤が多量の廃棄物を生じるのに対し、過酸化水素は最終的には無害な水と酸素に分解するため、工業利用するには環境にやさしい物質であると言われ、近年工業的な過酸化水素の利用は拡大してきている。

試薬用としては、濃度30w/v%の過酸化水素水が市販されている。主に酸化剤として用いられる。過酸化水素を酸化剤に用いた環境負荷の低い新規酸化反応法などが精力的に研究されている。同様の観点から合成への利用も数多く検討されているが、コストの高さのため実用化されたプロセスはシクロヘキサノンオキシム合成[3]など限られており、利用用途におけるシェアはまだ低い。

閉鎖系エンジンの酸素源としても利用が検討された。1930年頃からドイツのヘルムート・ヴァルターによって、過酸化水素から酸素を発生させ内燃機関を作動させるアイディアが研究されヴァルター機関(ワルター機関)という。結局、アメリカ海軍において、艦船に搭載可能な原子力機関の開発と成功が先んじたこともあって、ヴァルター機関はそれ以上省みられることなく、潜水艦の水中動力源としては実用化には至らなかった。日本でも第二次世界大戦中にドイツから技術提供を受けてヴァルター機関が研究されたが、実用化される前に終戦を迎えた。

漂白剤としての利用

衣料用漂白剤として過酸化水素は利用される。液体の衣料用漂白剤は希薄過酸化水素の溶液である。一方、過酸化水素と炭酸ナトリウムの錯体である過炭酸ナトリウムは、粉末で安定のため粉末の酸素系漂白剤として利用される。過炭酸ナトリウムは水に溶解すると炭酸ナトリウム(洗剤としても知られている)と過酸化水素とに乖離する。

また、の脱色に使用されることもあり、過酸化水素によって脱色した「偽の」ブロンドは、英語で peroxide blonde または bottle blonde と呼ばれる。

食品の分野ではうどん、かまぼこ等の漂白目的の食品添加物として認可されている。

殺菌剤としての利用

3%wの過酸化水素は医療用の外用消毒剤として利用され、オキシドール(oxydol)という日本薬局方名、またはオキシフル(Oxyfull)という薬剤名でも呼ばれる。

飲料生産の充填工程で、飲料を充填する前に低濃度の過酸化水素水を紙パック内に噴霧して内部を殺菌する飲料充填機も存在する。この際、パック内に噴霧された過酸化水素水はパック内に送風を行うことで分解・乾燥し無害化する。但し、噴霧量が多すぎるなどして飲料に過酸化水素水が混入するというトラブルも起こるリスクがある。

多くの生物種は過酸化水素分解酵素のカタラーゼを持つため、生体内での過酸化水素の寿命は極めて短い。つまり、(傷の内面を含む)体内に過酸化水素が侵入すると速やかに酸素に分解される(オキシフルを塗布した傷口で酸素の細かい白い泡の発生が観察される)。これを微生物分析への応用した用途がある。一般的に通性嫌気性細菌はカタラーゼを持つが、偏性嫌気性細菌は持たないため、細菌の種類を判別できる。また、カタラーゼは熱により変性することから、食品に混入した生物系の異物(毛髪や昆虫など)が加熱殺菌工程の前後どちらで混入したかを判別する苦情対応にも用いられる(殺菌前に混入した物であると泡が生じない)[4]

生産

過酸化水素(100%相当)の2008年度日本国内生産量は 214,210 t、工業消費量は 16,588 t である[5]。今日では、一般的にアントラセン誘導体自動酸化を利用して生産が行われている[6]。2-エチルアントラヒドロキノンもしくは2-アミルアントラヒドロキノンを溶媒に溶解し、空気中の酸素と混合するとアントラヒドロキノンが酸化されてアントラキノンと過酸化水素が生じる。ここからイオン交換水を用いて抽出し、アントラキノンと過酸化水素を分離する。分離後、わずかに混入している有機溶媒を除去し、さらに減圧蒸留することにより高濃度(30~60%)のものを得る。副生成物であるアントラキノンをニッケルまたはパラジウム触媒を用いて水素還元することでアントラヒドロキノンへと戻し再利用する。アントラヒドロキノンの酸化の際に側鎖酸化されたり、還元の際に芳香環還元されてしまうことがあり、適当な再生処理が必要である。本法ではアントラキノンをいかに効率よく循環・再生使用できるかが重要となる。

硫酸または硫酸水素アンモニウムの水溶液を電気分解して生じるペルオキソ二硫酸(H2(SO4)2)2−加水分解することによる生産法も行われていたが、電力消費などの理由から現在ではあまり行われていない。

2005年現在、工業的な利用量が増え続けており、アントラキノン法に代わる安価な製造法、精製法の研究開発が各所で進められている。実験室レベルの研究については、合成研究の項で述べる。

合成研究

工業的に用いられているアントラキノン法は、多段プロセスであること、有機溶媒を必要とすること、副反応を起こしたアントラキノンの再生が必要であること、など多数の問題があり、過酸化水素が高価になる原因となっており、新規過酸化水素合成法の開発が切望されている。新規かつマクロなレベルで過酸化水素が蓄積する合成法として、Pd触媒による合成と燃料電池反応法による合成の二つが挙げられる。

  • Pd触媒を用いた合成法

Pd(-Au)/CまたはPd(-Au)/SiO2触媒を用いてハロゲン化物イオン存在下、酸性条件で酸素と水素を直接反応させる。古くは、徳山ソーダがPd/SiO2触媒を用いて、高圧の酸素と水素を反応させると過酸化水素が高濃度で蓄積できることを特許取得している[7]。またデュポンも同様にPd触媒を用いた合成法を特許取得している[8]。最近では、石原らはPd-Auコロイド触媒を適切に調製することにより、ほぼ100%の選択性で過酸化水素が生成することを報告している[9]。酸素0.5気圧、水素0.5気圧の混合ガスを用いて、2時間反応させたところ0.4%の過酸化水素水が生成したとしている。本触媒系一般の問題点として、酸素と水素を直接混合するため爆発の危険性があること、過酸化水素を高濃度で蓄積するためには加圧が必要であること(1気圧では最高で1%~2%)、生成する過酸化水素水には酸や塩が含まれることが挙げられる。
特に爆発の危険性の問題は重大であり、この危険性を回避するため、反応速度を犠牲にして水素と酸素の混合比を爆発範囲から外す方法のほかに、酸素と水素をパラジウム薄膜で隔てた合成法がChoudharyらにより提案されているが、パラジウムが水素透過能を示すのは通常遥かに高温であり、単に膜に穴が開いていることが疑われることに加え、過酸化水素生成速度が極めて遅いなどの難点がある[10]

  • 燃料電池反応法

酸素-水素燃料電池では通常は発電を目的とし、酸素を水にまで還元させるが、適切な触媒を選択することにより酸素を過酸化水素に選択的に還元する方法が提案されている[11]。燃料電池反応法では酸素と水素は電解質に隔てられているため爆発の危険性が無いことが利点して挙げられる。まず酸水溶液中での過酸化水素の合成[12]および塩基性での過酸化水素合成[13][14]が報告された。特に塩基性では高効率で過酸化水素が生成したと報告されているが、これらの反応系ではパラジウム系と同様に生成する過酸化水素水に電解質が含まれるという難点を持つ。しかし、最近ナフィオン膜を用いた電解質を含まない過酸化水素水の直接合成法が提案された[15]。1気圧の条件であるにもかかわらず、コバルト触媒の回転数(ターンオーバー数)は8時間で400000に達し、生成する過酸化水素濃度は14%と非常に高い。本反応系の問題点として、効率が約40%(残りは水)と十分ではないことが挙げられる。

事故

1999年10月29日、過酸化水素を運搬中のタンクローリー首都高速2号目黒線を走行中に爆発、横転し多数の負傷者を出す事故が起こった。このタンクローリーは普段は塩化銅を含む廃液の運搬に使用されており、残留していた金属成分により過酸化水素の分解が進み爆発したという、初歩的なミスにより起こった事故である。このように過酸化水素は遷移金属により容易に分解されるので、注意が必要である。

その他

ミイデラゴミムシは体内に過酸化水素とヒドロキノンを貯めておき、これらを反応させて敵に対し蒸気とベンゾキノンから成る100°C以上の気体を爆発的に噴射する。生体ではエネルギー代謝の際、細胞内に過酸化水素が発生する。カタラーゼは細胞内の過酸化水素の分解を促進する役割を持つ。

関連項目

参考文献

  1. ^ a b 過酸化水素35%水溶液 MSDS[1]
  2. ^  曾根 興三、「過酸化水素」、世界大百科事典、第二版CD-ROM版、平凡社、1998年
  3. ^ 硫安を副生しないカプロラクタム合成法[2]
  4. ^ 河岸宏和 (2008), 図解入門ビジネス 最新 食品工場の衛生と危機管理がよ〜くわかる本, 秀和システム, p. 58, ISBN 978-4-7980-2007-5 
  5. ^ 日本国 経済産業省・化学工業統計月報[3]
  6. ^ 浜口高嘉「過酸化水素の製造と関連製品」, 月刊ファインケミカル, 2006年3月.[4]
  7. ^ Y. Izumi, JP Patent 昭51-4097.
  8. ^ L. W. Gosser, M. A. Paoli, US5135731, 1992.
  9. ^ Y. Nomura, T. Ishihara, Y. Hata, K. Kitawaki, H. Matsumoto, ChemSusChem, 2008, 1, 619-621.
  10. ^ V. R. Choudhary, A. G. Galward, S. D. Sansare, Angew. Chem. Int. Ed., 2001, 40, 1776-1777.
  11. ^ K. Otsuka and I. Yamanaka, Electrochim. Acta, 1990, 35, 319-322.
  12. ^ I. Yamanaka, T. Onizawa, H. Suzuki, N. Hanaizumi, Chem. Lett., 2006, 35, 1330-1331.
  13. ^ E. Brillas, F. Alcaida, P. L. Cabot, Electrochim. Acta, 2002, 48, 331-340.
  14. ^ I. Yamanaka, T. Onizawa, S. Takenaka, K. Otsuka, Angew. Chem. Int. Ed., 2003, 42, 3653-3654.
  15. ^ I. Yamanaka, S. Tazawa, T. Murayama, R. Ichihashi, N. Hanaizumi, ChemSusChem, 2008, 1, 988-990.

 

todas las traducciones de 過酸化水素


Contenido de sensagent

  • definiciones
  • sinónimos
  • antónimos
  • enciclopedia

 

5362 visitantes en línea

computado en 0,031s